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Structured and Sparse Canonical Correlation
Analysis as a Brain-Wide Multi-Modal
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Abstract— Multi-modal data fusion has recently emerged
as a comprehensive neuroimaging analysis approach,
which usually uses canonical correlation analysis (CCA).
However, the current CCA-based fusion approaches face
problems like high-dimensionality, multi-collinearity, uni-
modal feature selection, asymmetry, and loss of spatial
information in reshaping the imaging data into vectors.
This paper proposes a structured and sparse CCA (ssCCA)
technique as a novel CCA method to overcome the above
problems. To investigate the performance of the proposed
algorithm, we have compared three data fusion techniques:
standard CCA, regularized CCA, and ssCCA, and evalu-
ated their ability to detect multi-modal data associations.
We have used simulations to compare the performance of
these approaches and probe the effects of non-negativity
constraint, the dimensionality of features, sample size, and
noise power. The results demonstrate that ssCCA outper-
forms the existing standard and regularized CCA-based
fusion approaches. We have also applied the methods to
real functional magnetic resonance imaging (fMRI) and
structural MRI data of Alzheimer’s disease (AD) patients
(n = 34) and healthy control (HC) subjects (n = 42) from
the ADNI database. The results illustrate that the proposed
unsupervised technique differentiates the transition pattern
between the subject-course of AD patients and HC subjects
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with a p-value of less than 1 × 10−6. Furthermore, we have
depicted the brain mapping of functional areas that are
most correlated with the anatomical changes in AD patients
relative to HC subjects.

Index Terms— ADNI, canonical correlation
analysis (CCA), magnetic resonance imaging (MRI),
multi-modal data fusion, multivariate analysis.

I. INTRODUCTION

BY ADJUSTING the imaging protocols and pulse
sequence parameters, magnetic resonance imaging (MRI)

generates a variety of image contrasts that provide a wealth of
information about the anatomy and physiology of the brain.
In the fusion terminology, a “modality” is defined as a single
image contrast. The main goal of gathering and analyzing
multiple modalities is to utilize the common as well as unique
information from complementary modalities to understand
the problem at hand, which cannot be done by independent
analysis of individual modalities.

In data integration approaches, data from different modal-
ities are usually analyzed through separate pipelines and the
results combined at the interpretation level to yield decision
level fusion [1], [2]. This approach may use information
from one modality to improve the overall result of other
modalities. However, there should be benefits to fuse the data
in earlier steps, in particular, after pre-processing but before
statistical analysis to yield feature-level fusion [3]. Unlike
data integration methods, data fusion techniques incorporate
all features from different modalities into a combined analysis
and allow for true interaction between different data modalities
while characterizing between-subject variability in a data-
driven and exploratory manner.

Canonical correlation analysis (CCA) [4] is a classic tool
in multivariate data fusion which provides optimal projections
of two data modalities (with different scales, resolutions, and
dimensionalities) in such a way that the correlation between
the projections is maximized. Similar to [5], a CCA-based
fusion approach may be used at the feature level. Recently,
several extensions of CCA have been proposed to fuse dif-
ferent modalities at the feature level, including multi-modal
CCA (mCCA) [6] and mCCA + joint independent component
analysis (jICA) [7].

Typically, the number of variables (voxels) in the MRI
datasets is much larger than the number of observations
(subjects). Due to this high dimensionality and high noise
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level, variable selection is critical to avoid over-fitting of
the data [6]. The standard CCA, however, does not perform
variable selection and hence unimodal feature selection is
performed for each modality separately [8], which is blind
to the next modality and therefore may limit biological inter-
pretability of the results.

To overcome the above limitation, sparse CCA (sCCA) has
been proposed [9], [10]. This approach includes a built-in
procedure for variable selection. In sCCA, a sparsity penalty
function such as an l1 penalty is often imposed as a regu-
larization to identify sparse sets of associated variables that
are highly correlated. Through imposed sparsity, parsimonious
multivariate methods increase the interpretability of the out-
put and potentially improve the generalizability of the pro-
duced model. In addition, in neuroimaging, the observed data
(images) are positive. Because existence of negative weights
in the canonical coefficients makes the interpretations difficult,
it seems rational to add a simple non-negativity restriction as
a regularization term to the standard CCA [11], [12].

To apply CCA on the imaging data, it is essential to
reshape the image data into vectors. Such reshaping breaks
down the spatial structure and dependencies of the image
data to its local neighborhood voxels. CCA and sCCA do not
make any assumptions about the spatial smoothing, depen-
dency, or structural relationships of the input variables. This
limits their performances on complex and high-dimensional
biological imaging data in real problems. Furthermore, adja-
cent pixels/voxels in a homogeneous region of the image are
typically correlated. Therefore, canonical coefficients associ-
ated with these voxels should have similar magnitudes to
reflect the underlying association [12], [13]. A limited number
of previous CCA-based fusion approaches investigated this
spatial smoothness [14]–[18]. For example, in [17], Lin et al.
developed a group sparse CCA approach for fusing functional
and genetic datasets. They assumed that all voxels in a region
of interest (ROI) have almost the same canonical coefficients.
In this paper, we add two constraints of non-negativity and
smoothness to sCCA. The groupness constraint in [17] is a
special case of our graph-based smoothing constraint.

Finally, some of the previous data fusion methods are
applicable when only one of the datasets is high-dimensional
(number of features � number of samples) [11], [16]. These
methods are not symmetric, so by changing data modalities
from phenotypic or behavioral to neuroimaging or genetic,
for example, they may not work properly.

To overcome the above problems, we present a symmetric,
structured, and smooth extension of the sCCA, which we
refer to as structured and sparse CCA (ssCCA). Using some
targeted biological heuristics, we develop a physiologically
interpretable multivariate data fusion technique that finds the
interaction between different modalities in an exploratory
manner. The proposed method directly takes two sets of extra-
large multi-modal data (e.g., an anatomical and a functional
dataset) and preserves spatial structure and smoothness of the
image data in the calculation of the canonical coefficients.
The proposed optimization framework does a flexible com-
bination of sparsity and smoothness in a unified framework
for big datasets with strong convergence guaranties. The main

objective of the proposed method is to combine related datasets
to find the best canonical variates (CVs) that fit the subject-
course (a vector of subject weights, a scalar value per subject)
and at the same time to find physiologically interpretable and
informative features that describe the hidden phenomenon in
these datasets.

The proposed method and its implementation are introduced
in the next section. The experimental dataset and the pipeline
of pre-processing of each modality are described in Section 3.
In Section 4, we present our evaluation and comparison
studies of the proposed method and another CCA-based fusion
approaches, using simulated multi-modal datasets as well as
real datasets of Alzheimer’s disease patients and age-matched
healthy control subjects that include anatomical and functional
MRI data. Finally, in Section 5, we conclude the paper with
a summary of the presented materials and discussion of the
future work.

By convention, matrices are denoted by boldface capital
letters, vectors are denoted by boldface lowercase letters, and
scalars are denoted by lowercase letters.

II. PROPOSED METHOD

A. Canonical Correlation Analysis (CCA)

Let us consider two random vectors x = (
x1, x2, . . . , x p

)

and y = (
y1, y2, . . . , yq

)
, which contains p− and q− dimen-

sional vectors of voxels, respectively. Suppose that n i.i.d.
samples are measured (from n subjects) of x and y, denoted
by X ∈ R

n×p and Y ∈ R
n×q , respectively. Assume that the

measurements for each variable xi ∈ R
n (or yi ∈ R

n) has
been standardized to have zero mean and unit variance. Prior
biological knowledge of these data allows us to hypothesize
that there is a meaningful correlation between the two datasets,
i.e., there exists a reciprocal relationship between the X
variables and the Y variables. The aim of CCA is to find two
projection vectors (canonical correlation coefficients, CCCs)
w1 ∈ R

p and w2 ∈ R
q to maximize the correlation between

the first pair of canonical variates u1 = Xw1 and v1 = Yw2

ρ = arg max
w1,w2

wT
1 Cxyw2

s.t . wT
1 Cx xw1 = 1 and wT

2 Cyyw2 = 1 (1)

where Cx x , Cyy, and Cxy are covariance and cross-covariance
matrices, respectively. In practice, Cxy, Cx x , and Cyy are
replaced by the observed sample cross-covariance and covari-
ance matrices as XT Y, XT X, and YT Y, respectively [16].

B. Sparsity Constraint

Due to the small number of samples but high-dimensional
variables/features in the neuroimaging datasets, (1) faces
the overfitting problem. Therefore, sparse penalties such as
l1-norm are imposed on w1 and w2 in the sCCA analysis [10]:

max
w1,w2

wT
1 XT Yw2

s.t . wT
1 XT Xw1= 1, wT

2 YT Yw2= 1,

‖w1‖1 ≤ c1, ‖w2‖1 ≤ c2 (2)
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where c1 > 0 and c2 > 0 control the level of sparsity. Setting
small values for c1 and c2 increases the penalty and forces
more CCCs to 0.

C. Collinearity Problem

When n � p or n � q, the features in X and Y tend
to be highly collinear (linearly dependent). This phenomenon
is analogous to the multi-collinearity problem in regression
analysis. This makes the ill-conditioned matrices Cx x and Cyy

singular and the inverse operations on them, i.e.,
(
XT X

)−1

and
(
YT Y

)−1
, lead to unreliable results in the computation of

standard CCA. The condition placed on the data to guarantee
that Cx x and Cyy will be invertible is n ≥ p+q +1. However,
this condition is not usually met in neuroimaging.

Treating the covariance matrix as an identity matrix helps us
overcome this problem [9], [10], [19]. Therefore, wT

1 XT Xw1
and wT

2 YT Yw2 in (2) can be replaced by the square of
the l2-norms of w1 and w2, respectively (i.e., ‖w1‖2

2 = 1
and ‖w2‖2

2 = 1). Notably, when the estimated covari-
ance matrices of X and Y are identity matrices, CCA
equals two-block Mode A partial least squares (PLS) [20].
The function maximized by PLS is the covariance between
the two CVs (latent variables) u1 and v1, which can be
written as max‖w1‖2=‖w2‖2=1corr (Xw1, Yw2)

√
var (Xw1)√

var (Yw2) [20]. An interesting feature of PLS is that it
tries to construct CVs that explain their own modality via
max (var(.)) and meanwhile are well correlated with the
corresponding CVs in the other modality via max (corr(.)).
Next, based on [10], we replace the equality constraint of the
l2-norm (i.e., ‖w1‖2

2 = 1 and ‖w2‖2
2 = 1) with ≤ operator.

This means that we replace the non-convex l2-norm penalty
with its convex version, which includes the equality constraint
on the l2-norm.

D. Non-Negativity Constraint

In the CCA, the canonical coefficient of each feature repre-
sents its contribution in the final linear combination. The most
prominent features are expected to have large weights and the
redundant features have zero weights. However, in standard
CCA and its extensions, due to the absence of any restriction
on the sign of the extracted CCC vectors, the canonical coeffi-
cient of each feature could be positive or negative. Therefore,
the negative features (voxels) in the reconstructed map of the
brain cannot be interpreted as weights (negative weights are
not interpretable). In this condition, a constant cannot be added
to all features (voxels) to make them positive because the
zero-valued features (voxels) lose their interpretation as no
contribution to the canonical variate. Similarly, the absolute
value of negative weights cannot be used because positive
and negative weights are expected to be different. Therefore,
we restrict the elements of w1 and w2 in (2) to be non-negative
and add the constraints w1i ≥ 0, ∀i = 1, . . . , p and w2 j ≥ 0,
∀ j = 1, . . . , q to this equation.

E. Smoothing Constraint
In a pre-processing step before applying a CCA-based

method to the imaging datasets, 2D and 3D data are reshaped

Fig. 1. (a) A 3D labeled volume with dimensions of 4×4×3.
(b) Laplacian matrix using the nearest neighbors in a 3×3×3 neighbor-
hood (i.e., 26-connectivity). The horizontal and vertical axes in (b) reflect
the voxel labels and color-coded dots show relative weights of the
voxels.

into 1D vectors. This reshaping destroys the spatial infor-
mation/relation and dependent structure of the variables to
their local neighborhoods. To preserve such essential infor-
mation after vectorization, we add a structural smoothing
penalty term to the objective function. This approach is less
restrictive than making all voxel weights equal but more
restrictive than the unconstrained method where the weights
are independent. To form such a penalty, consider a network
represented by an undirected weighted graph. The vertices
of this graph correspond to the voxels (e.g., p voxels) and
the edges indicate the link between the voxels in the graph.
Also, L is the matrix weight of the edges where li j denotes
the weight of the edge e = {i ∼ j}. Next, for a given
adjacency matrix A, we define D = diag

(
d1, d2, . . . , dp

)

where d j = ∑P
k=1 a jk and the associated Laplacian matrix as

L = D−A. This matrix is a sparse and symmetric connectivity
matrix that encourages similar weights for the neighbor-
ing voxels. For a given weight vector u, it can be shown
that [21]:

uT Lu =
∑

1≤ j<k≤p

a jk
(
u j − uk

)2 (3)

This constraint generates a heavy penalty if the neigh-
boring voxels have dissimilar weights. It displays a local
smoothing effect by encouraging the variables that are linked
(as represented by L) to have relatively similar coefficients.
The biological motivation of this penalty is that the neigh-
boring voxels that are linked to a predefined structure are
expected to have similar weights. Therefore, these voxels
should have smooth coefficients. Fig. 1 shows an example of
the produced Laplacian matrix for a 3D volume of 4 × 4 × 3
voxels. In this figure, the number of non-zero elements in
the Laplacian matrix is 700 [sparsity rate = 700/(48×48)
= 30.38%].

F. ssCCA

Finally, after considering the solution for the
multi-collinearity problem in the neuroimaging data and
adding non-negativity and smoothing terms for both of the
modalities, the proposed ssCCA with the tuning parameters
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c1 > 0, c2 > 0, c3 > 0, c4 > 0 is formulated as

max
w1,w2

wT
1 XT Yw2

s.t . ‖w1‖2
2 ≤ 1, ‖w2‖2

2 ≤ 1,

‖w1‖1 ≤ c1, ‖w2‖1 ≤ c2,

wT
1 Lw1 w1 ≤ c3, wT

2 Lw2 w2 ≤ c4,

w1i ≥ 0 ∀i = 1, . . . , p, w2 j ≥ 0 ∀ j = 1, . . . , q (4)

where c3 and c4 are penalty parameters that control the
level of smoothness and Lw1 and Lw2 represent the semi-
positive definite Laplacian matrices of two modalities (corre-
sponding to w1 and w2), respectively. The tuning parameters
C = (c1, c2, c3, c4) control the model complexity and have to
be tuned. To facilitate computation, we write constraints on
w1 and w2 in Lagrangian form as [10], [16]:

max
w1,w2

wT
1 XT Yw2 − λ1 ‖w1‖1 − λ2 ‖w2‖1

−1

2
wT

1

(
I + α1Lw1

)
w1

−1

2
wT

2

(
I + α2Lw2

)
w2

s.t . w1i ≥ 0 ∀i = 1, . . . , p, w2 j ≥ 0 ∀ j = 1, . . . , q (5)

where the regularization parameters λ1, λ2, α1, and α2 have
the same roles as c1, c2, c3, and c4, respectively.

The objective function wT
1 XT Yw2 in (5) is bilinear in

w1 and w2: that is, with w1 fixed, it is linear in w2 and
vice versa. The above problem is also a biconvex problem,
meaning that by fixing w1 (w2), (5) is convex with respect
to w2 (w1). This property suggests an iterative algorithm for
finding w1 and w2, i.e., optimizing w1 with a fixed w2 and
then, optimizing w2 with the w1 found in the previous step
(details given in Supplementary Material 1, Section A). The
complete algorithm is described in Algorithm I (details are
given in Supplementary Material 1, Section B).

In the above problem, l1-norm is used as a sparsity
constraint which is a convex penalty term. Therefore, the
steps 3(a-d) in Algorithm I monotonically converge to the
global solution of (5) for w1 and w2 (details are given in
Supplementary Material 1, Section A along with its differences
from [22]).

The iterative algorithm starts from an initial point and
alternately approximates and updates w1 and w2 to minimize
the cost function. The iterations stop when the convergence
criterion is met and the resulting w1 and w2 vectors are taken
as the optimal solution. To find the next CCCs vectors and
CVs, the above stages are executed after the contributions
of the first CVs are regressed out (deflated) from X and Y
(step 7). After that, the algorithm is repeated for the residual
matrices to obtain the remaining pairs of CVs. In each itera-
tion, the extracted CVs are orthogonal to the previous pair of
CVs. This process can be repeated until the residual matrices
contain no more information or until the decision is made that
further analysis is no longer useful.

To initialize w1 and w2 as the inputs of the proposed
algorithm (Algorithm I), we use the singular value decom-
position (SVD) of XT Y. Since XT Y may have a very large
dimension (p × q) and its SVD cannot be computed on a
personal computer, we use a QR decomposition algorithm.

Algorithm I. The iterative algorithm of structured and
sparse CCA
Definitions:
prox P (y, λ) �argmin

x

{
1
2 ‖x − y‖2

2 + λP (x)
}

Pw(w) � ‖w‖1

λmax (A) � largest eigenvalue of A ‖X‖A �
√

XT AX
Swi � I + αi Lwi ,∀i = 1, 2 Twi � λmax (Swi ),∀i = 1, 2

Input: two datasets X and Y, Tw1 , and Tw2 .
Output: corresponding CVs and canonical coefficients of two datasets.

1: Initialize w1 and w2 by QR version of SVD of XT Y, with and ‖w1‖2
2 = 1

and ‖w2‖2
2 = 1.

2: Use two steps 5-fold cross validation to obtain the optimal tuning
parameters.
3: Solve w(k)

1 , w(k)
2 using the following iterations until it convergence:

a) Estimate ŵ1:

w(k+1)
1 = prox pw1

(
w(k)

1 + 1

Tw1

(
XT Yw∗

2 − Sw1 w(k)
1

)
,
λw1

Tw1

)

b) w∗
1 =

{
ŵ1/

∥
∥ŵ1

∥
∥

Sw1
,

∥
∥ŵ1

∥
∥

Sw1
> 0

0, otherwise
c) Estimate ŵ2:

w(k+1)
2 = prox pw2

(
w(k)

2 + 1

Tw2

(
YT Xw∗

1 − Sw2 w(k)
2

)
,
λw2

Tw2

)

d) w∗
2 =

{
ŵ2/

∥
∥ŵ2

∥
∥

Sw2
,

∥
∥ŵ2

∥
∥

Sw2
> 0

0, otherwise
4: Output: w1 = w∗

1/
∥
∥w∗

1

∥
∥

2 , w2 = w∗
2/

∥
∥w∗

2

∥
∥

2.
5: Calculate the CVs as u = Xw1 and v = Yw2.
6: Do a permutation analysis to check if the extracted CVs are statistically
significant. If the correlation is significant, go to Step 7. Otherwise, there is
no significant correlation between the current two datasets.
7: Deflate X and Y by subtracting the effects of the CVs u and v from the

data space: X = X − u
(

uT u
)−1

uT X, Y = Y − v
(

vT v
)−1

vT Y.
8: Do this iterative algorithm to find the next CVs.

According to this decomposition, the left and right singular
vectors of XT Y are the same as the original matrices manip-
ulated using the traditional SVD, up to a sign change (details
are given in Supplementary Material 1, Section C).

Next, we add the non-negativity constraint, as mentioned
in (5), to the proposed ssCCA problem. To this end, we replace
the proximal operator in step 3(a) and (c), using the positive
proximal operator. This operator for the l1-norm (i.e., P (w) =
‖w‖1) has the simple closed form solution prox+ (y, λ) =
(y − λ)+ [22], i.e., the positive soft-thresholding operator.

G. Simulated Data
Two 3D whole brain datasets were simulated with two

imaging modalities for two groups, HC and patients.
For the simulated datasets, we generated features (voxels)
using multivariate normal distributions with mean and vari-
ance parameters obtained from experimental data. Using
T1-weighted MNI152 1 mm data and FreeSurfer soft-
ware version 5.3.0 (http://www.surfer.nmr.mgh.harvard.edu),
we generated a label map with G = 190 anatomi-
cal ROIs. Then, we estimated the mean intensity mui ,
i = 1, . . . , G and standard deviations σi , i = 1, . . . , G of the
ROIs. Next, for creating the two modalities, we normalized
the extracted label map to 2 mm and 3 mm isotropic voxel
sizes using the FLIRT module in FSL software version 5.0.9
(www.fmrib.ox.ac.uk/fsl) for the whole brain volume of each
simulated individual and each modality. Then, the intensities
of the voxels in each ROI were generated by a vector drawn
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Fig. 2. Multi-slice view of the 3D simulated brain using the mean and
standard deviation values extracted from 190 ROIs parcellated from
T1-weighted MNI152 1 mm data. Each modality is generated in a
resolution that mimics experimental data: (1st row) 2 mm and (2nd row)
3 mm isotropic voxels. For clear demonstration of the ROIs (in the 2nd

group of subjects), these locations are shown in white.

from the multivariate normal distribution with parameters
(mui , σ

2
i I), i = 1, . . . , G. The voxel intensities can be inter-

preted as baseline measurements for that voxel [bl in (6)]. The
dimensions of the simulated brain images are 91×108×91 and
60×72×60 voxels, respectively for the first (X) and sec-
ond (Y) modalities. After that, we extracted the in-brain voxels
of each modality. This made the dimensions of the first and
second modalities p = 189, 625 and q = 53, 840, respectively.
The number of non-zero elements of the corresponding Lapla-
cian matrices of the first and second modalities was 4,672,415
(sparsity rate = 0.01%) and 1,282,724 (sparsity rate = 0.04%),
respectively.

To correlate the simulated datasets, a latent model similar
to [9] was applied. To this end, in the second group (patients),
a small subset of variables (voxels) in X, i.e., pc number,
were correlated with a subset of variables (voxels) in Y, i.e.,
qc number, while the rest of the variables were independent.
The locations of these latent variables for the two modalities
are shown in Fig. 2. The correlated variables between the
two modalities are located in spherical clusters with different
sizes. To produce an association between these two modalities,
we randomly selected 9 locations (5 for the first and 4 for
the second modality) as the centers of the spherical regions.
These centers were chosen such that all of the spheres were
entirely inside the brain. We randomly selected the radii of
the spheres. In the first modality, they were 8, 6, 4, 8, and
10 mm and for the second one, they were 6, 9, 6, and 9 mm
(details are given in Supplementary Material 2, Table S2.I).
This resulted the number of correlated voxels in the two
modalities as pc = 1107 and qc = 240, respectively.

To generate an association between the two modalities,
we first set a latent variable μ j , j = 1, . . . , n, to play the
role of the samples (subjects) in the two modalities. Using this
variable, we simulated the same samples in different modali-
ties. This variable was produced from a normal distribution
μ j ∼ N

(
0, σ 2

μ

)
. In addition, we defined two variables δi ,

i = 1, . . . , pc and βi , i = 1, . . . , qc to play the role of imaging

features that were correlated such that
pc∑

i=1
δi =

qc∑

i=1
βi = 1.

For the correlated voxels, we simulated the data using the
following strategy [9]:

x j i = bl + δiμ j + ex ji ∀ j = 1, . . . , n, i = 1, . . . , pc

y j i = bl + βiμ j + ey ji ∀ j = 1, . . . , n, i = 1, . . . , qc (6)

For the uncorrelated features (voxels), μ j = 0,
j = 1, . . . , n, and therefore, the features were the sum of

TABLE I
DEMOGRAPHIC INFORMATION OF THE PARTICIPANTS

INVOLVED IN THIS STUDY

the baseline (bl) and a zero-mean white Gaussian noise with
a standard deviation of σe.

III. REAL DATA COLLECTION AND ANALYSIS

A. Real Data Collection

We downloaded the T1-weighted and resting state func-
tional MRI (rs-fMRI) data of 76 subjects (34 Alzheimer’s
disease – AD – and 42 elderly healthy controls – HC) from
ADNI.1 The two groups were matched for their age, sex,
and education, with demographic data shown in Table I. All
subjects underwent whole-brain MRI scanning on 3.0 T Philips
Medical Systems scanners, on at least one of two occasions
(baseline and 6 months later) from ADNI-2. The parameters
of the T1-weighted MP-RAGE sequence were: acquisition
matrix = 256×256; voxel size = 1.2 mm × 1.0 mm ×
1.0 mm; TR = 6.78 ms; TE = 3.16 ms; flip angle = 9°;
and 170 sagittal slices. The rs-fMRI data included 140 image
volumes acquired while the subjects were at rest in the
scanner, using a gradient-echo EPI pulse sequence with the
following parameters: acquisition matrix = 64×64; voxel
size = 3.31 mm × 3.31 mm × 3.31 mm; 48 axial slices;
TR = 3000 ms; TE = 30 ms; flip angle = 80°.

B. Pre-Processing

The T1-weighted images were pre-processed as follows.
First, the intensities of the T1-weighted images were bias cor-
rected using the N3 v1.1 package in the FreeSurfer. Then, skull
stripping was performed using the hybrid watershed algorithm
in FreeSurfer. Next, the brain-extracted volumes were spatially
normalized into the standard MNI space (MNI152 3 mm)
using the FLIRT. Then, we produced a global binary brain
mask by multiplying all individual binary masks. Finally,
we applied this global mask to individual brain extracted
T1-weighted images. The final dimensions of the structural
images were 60×72×60 and contained 53,328 intra-cerebral
voxels.

Single subject rs-fMRI datasets were pre-processed using
FEAT in FSL. The first 5 EPI volume images were dis-
carded to remove the initial transients and then slice timing
correction was performed. Next, images underwent: motion

1Data collection and sharing for this project was funded by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant
U01 AG024904) and DOD ADNI (Department of Defense award num-
ber W81XWH-12-2-0012). ADNI is funded by the National Institute on
Aging, the National Institute of Biomedical Imaging and Bioengineering,
and through generous contributions from many other sources. Detailed ADNI
Acknowledgements information is available in http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Manuscript_Citations.pdf.
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correction using MCFLIRT; removal of non-brain tissue using
BET; spatial smoothing using a 5 mm full-width-at-half-
maximum (FWHM) Gaussian kernel; mean intensity nor-
malization to force each volume to have the same mean
intensity; and high-pass temporal filtering (0.01 Hz). After pre-
processing, the fMRI volumes were registered (affine registra-
tion algorithm) to the 3 mm isotropic standard space (MNI152)
using T1-weighted anatomical images.

Eigenvector centrality mapping (ECM) of the rs-fMRI
time series in the MNI-space was performed using the fast
ECM (fECM) software [23], which yields a voxel-wise mea-
sure of the centrality of a node (voxel) to the functional brain
network. The benefits of centrality mapping relative to the
common techniques to study functional connectivity (FC) in
the rs-fMRI data (i.e., ICA and seed-based correlations) is that
it does not rely on the prior definition of ROIs and considers
the brain as a large network, rather than dividing it into several
sub-networks. ECM requires the computation of a voxel-wise
connectivity matrix to calculate its eigenvectors [24]. A mask
of the intra-cerebral voxels [after excluding the white matter
(WM) regions] across all subjects’ pre-processed datasets (i.e.,
in the intersection of all single-subject masks) was applied
before the EC maps were computed. The output of the
centrality mapping is a single map for each subject (contains
33,117 voxels), which is used as a voxel-wise FC map for our
multi-modal fusion approach.

C. Data Fusion

The 3D structural image and centrality map of each sub-
ject were reshaped into one-dimensional vectors x and y,
respectively. The dimensions of each matrix were [number of
subjects] × [number of voxels] for each of the two modalities.
It is noteworthy that the arrangement of the subjects in each of
the two modalities has to be quite similar. In each modality,
we first put the HC subjects randomly in the top rows and
then put the AD subjects randomly in the remaining rows.
Next, data normalization was done in such a way that each
column of each matrix had zero mean and unit variance to
account for the scale differences among the different datasets.
In the next step, the Laplacian matrices for different modalities
were prepared based on the predefined neighborhood connec-
tivity where we used 26-connectivity. The dimensions of the
Laplacian matrices of the first and second modalities were
53,328×53,328 and 33,117×33,117, respectively. The num-
ber of non-zero elements for these matrices were 1,270,664
(sparsity rate = 0.04%) and 601,623 (sparsity rate = 0.05%)
for the first and second modalities, respectively. The Laplacian
matrices are sparse; they are constructed once and used multi-
ple times in the process. Next, the proposed method described
in section II above was applied to two modalities. The CCC
vectors w1 and w2 were calculated in such a way that, each
produced pairs of maximally correlated CVs were orthogonal
to the previously extracted CVs vectors. The outcome of
this stage was l = min {rank (X) , rank (Y)} CVs vectors,
produced by linear combinations of the original data using
CCCs with different sparsity and structural constraints.

D. Reliability Evaluation

When the number of variables is large, it is probable that
a random pair of variables will show a high correlation by
chance. To make sure that the correlations obtained by ssCCA
were statistically significant, we performed a non-parametric
permutation analysis. At first, the canonical correlation was
calculated for the original datasets. For the permutation test,
the rows of one dataset (X or Y) were randomly permutated for
all features while keeping the other dataset intact. This process
was repeated 10,000 times. The proposed ssCCA method was
applied to each of these permutations. Then, the canonical
correlation values of the extracted CVs in the permutated
datasets were calculated and used to estimate the probability
distribution of the canonical correlation of two CVs under the
null hypothesis (pairs of CVs were correlated by chance). The
p-value of the correlation of each pair of CVs was measured
by the proportion of the correlations that were larger than the
original correlation (real dataset). If the canonical correlation
for the original datasets was small enough (less than 5%), then
that pair of CVs were considered statistically significant.

E. Parameter Optimization
Optimization of the penalty parameters (λ1, λ2, α1, and α2)

for each pair of CVs was done by the k−fold cross-validation.
The dataset was divided into k subsets (based upon subjects),
of which k −1 subsets form the training set and the remaining
subset forms the validation set. For each method, at each fold
of the cross-validation, the estimation of the model (weight
vectors) was done using the k − 1 training samples and tested
on the remaining sample. This was repeated k times, such
that each subset functioned both as a validation set and as a
part of the training set. Our cross-validation strategy had two
steps [17]: (1) first, λ1 and λ2 were set to zero and the opti-
mal values for α1 and α2 were found; and (2) using the optimal
values of α1 and α2 obtained in the first stage, the optimal
values of λ1 and λ2 were found. Based on the recommendation
of [25] for selecting the tuning parameters, we minimized the
mean absolute difference between the canonical correlation in
the training and testing subsets in a cross-validation procedure.
This measure is minimal when the test sample correlation is
equal to the training sample correlation and thus its minimiza-
tion increases the generalizability of the results and decreases
the over-fitting of the model.

IV. RESULTS

A. Simulation Study

To assess the performance of the proposed method,
we simulated two correlated datasets to mimic real datasets.
The aim of these simulation studies was to investigate the
performance of the proposed method, over the traditional
CCA-based fusion approaches such as standard CCA without
regularization, i.e., λ1 = λ2 = α1 = α2 = 0 in (5) and
sparse and regularized CCA [l1 + l2, i.e., α1 = α2 = 0
in (5)]. In all simulations, a 5-fold cross-validation was used
to select the optimal parameters. Here, it should be noted
that the traditional CCA and sCCA algorithms cannot be
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Fig. 3. Effects of sample size, dimensionality of features, and non-negativity constraint. The yellow, red, and blue boxplots show the results of
ssCCA (with NN), ssCCA (without NN), and sCCA (with NN) using two different criteria: (a, b) true positive and (c, d) discordance. Plots (a, c) show
the results for the first modality (w1) and (b, d) demonstrate the results for the second one (w2). The numbers of the truly correlated variables in
the first and second modalities are 1107 and 240, respectively. The numbers of the uncorrelated variables in the two modalities are 188,518 and
53,600, respectively.

applied to a high dimensional multi-modal dataset without a
unimodal feature selection (like PCA) as a pre-processing step.
The proposed SVD framework (used in the general ssCCA
framework) overcomes this problem.

In the simulation studies, the ground truth is known and
the performance of the methods can be evaluated by com-
puting the true positive (TP) (sensitivity), false positive (FP)
(1 − specificity), i.e., the number of noise variables with non-
zero weights in the CCC vector, false negative (FN), i.e.,
the number of correlated variables that have zero weight and
are not selected, and discordance (FP + FN), which reflects the
number of incorrectly identified variables. In all simulations,
50 replications were generated and the averages of TP and
discordance over these 50 replications are reported.

The effect of sample size, dimensionality of the features,
non-negativity constraint, and the standard deviation of the
noise for different methods were investigated through the first
and second simulation studies, respectively. Also in [26], we
probed the performance of the fusion methods using a low
dimensional simulated dataset.

B. Simulation 1: Effect of Sample Size, Dimensionality
of Features, and Non-Negativity Constraint

The sample size and dimensionality of the available multi-
modal datasets have a significant influence on the accuracy of
the fusion methods. To demonstrate these effects, we varied
the sample size from 25 to 200 in four levels of 25, 50, 100,

and 200 samples per group. In addition, the simulated datasets
have a different number of features, i.e., 189,625 and 53,840.
In the simulated datasets, the range of intensity values for
the simulated brain was between 797 and 9454. The standard
deviation used for simulation of the latent variable μ and the
added white Gaussian noise to the simulated brain were σμ =
1000 and σe = 7.0, respectively. The average peak signal to
noise ratio (PSNR) for the simulated images was −16.9 dB
and SNR was 15.2 dB. Fig. 3 illustrates the effect of sample
size and non-negativity (NN) constraint on TP and discordance
of ssCCA and sCCA. This figure shows that, based on the TP
criteria (Fig. 3. a-b), the proposed ssCCA (with and without
NN) has a relatively accurate and stable TP pattern in different
sample sizes for both of the modalities, in comparison with the
sCCA (with NN) approach. The proposed method generates
acceptable results even in low sample size scenarios.

In Fig. 3.c, the results demonstrate that, for high-
dimensional data and low sample sizes, the non-negativity con-
straint is even more important than the smoothing constraint.
However, by increasing the sample size, the result of ssCCA
(without NN) converges to the result of ssCCA (with NN). The
reason for these observations is that, in ssCCA (without NN),
when the sample size increases to 400, automatically the CCC
weights of all of the 50 replications become non-negative.
Therefore, in this condition, there is no difference between
ssCCA (with NN) and ssCCA (without NN). In addition, based
on the discordance metric, for the first modality (Fig. 3.c),
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when the number of samples increases, the difference between
the discordance of ssCCA (with and without NN) and sCCA
also increases.

Finally, in Fig. 3.d, the results show that there is a small
difference between the results of ssCCA (with NN) and ssCCA
(without NN). The justification for these observations for
the second modality is that the CCC vectors extracted from
ssCCA (without NN) in all of the sample sizes and in all of
the replications are non-negative. As a result, this constraint
does not change the final results considerably and the TP and
discordance of the ssCCA (with NN) and ssCCA (without NN)
are almost the same. Fig. 3.d demonstrates that for the second
modality, the discordance of ssCCA approach in different
sample sizes is almost the same. The results suggest that when
the dimensionality of the data decreases from 189,625 (first
modality) to 53,600 (second modality), the performance of
the proposed fusion approach improves. Based on the results
of this section, in the following simulation and experimental
studies, we have added the non-negativity constraint to ssCCA.

C. Simulation 2: Effect of Noise

To examine the effect of SNR on the accuracy of recov-
ering truly correlated variables in each modality, the TP
and discordance of the simulated data as a function of the
standard deviation of the additive Gaussian white noise for the
sCCA and ssCCA approaches are evaluated. In this simulation,
the sample size was 50 (25 per group), σμ was 1000, and
the standard deviation of the noise was 7.0, 8.0, and 9.0.
For these simulated data, the PSNR varied from −16.9 to
−19.1 dB and the SNR varied from 15.2 to 12.8 dB. Fig. S2.1
(in Supplementary Material 2) shows the effect of the noise
variance on TP and discordance. The results show that, for a
wide range of noise power, the ssCCA approach is superior to
the sCCA approach. In addition, ssCCA is not very sensitive
to the noise power.

D. Experimental Results

We used our proposed ssCCA method to analyze the corre-
lation between structural and functional datasets of 76 subjects,
which were randomly divided into two subsets: training and
testing. The optimal parameters were obtained from the train-
ing data by 5-fold cross validation. The models were estimated
as well as the features were selected from the training data
using the optimal parameters. Then, these estimated models
were applied to the testing data to predict the correlation
between the two datasets.

Here and for both of the modalities we extracted three
CVs, which all of them were statistically significant. However,
we only used the first pair of CVs (Fig. 4) with a correlation
of 85% (for comparison, the first CVs of sCCA is shown
in Supplementary Material 2, Fig. S2.2). The first pair of
CVs extracted the hidden pattern in the current population
(42 HC vs. 34 AD) and the transition pattern between the
AD and HC groups is clearly seen in the extracted subject-
course. We performed a two-sample t-test on the first pair of
CVs to test if the CVs were significantly different between
the two groups in each modality. To this end, 100,000 random

Fig. 4. The first CVs produced by the proposed ssCCA method where
the correlation between the two CVs is 85.27%.

permutations were performed on the first pairs of CVs for
each modality and after each permutation, the t-statistics was
manipulated. After performing the 100,000 permutations, we
counted the number of permutations whose t-statistics were
higher than the t-statistics of the original CV. This fraction
was used to determine the p-value of the t-test. The result
shows that the p-value for the first pair of CVs is less than
1×10−6 between the AD and HC subjects for both modalities.
To correct for the unbalance of the available dataset (34 AD
vs. 42 HC), we used inverse probability weighting technique
in doing the t-statistics analysis.

Note that the proposed method is an unsupervised learning
process that finds these CVs without any knowledge of the
status of each subject, and only by using the exploratory
informative feature extraction, predicts the true subject-course
of the data. Fig. 5 displays the ssCCA results on the brain
in a manner similar to the traditional voxel-based analysis.
This spatial map is produced based on the back-reconstruction
of the CCC vectors for each modality to the 3D brain
volume. Fig. 5 (2nd row) shows the brain mapping of func-
tional area (w2) correlated with the anatomical (w1) changes
in Fig. 5 (1st row) for the AD and HC subjects that are
used to produce these CVs. There are brain ROIs in the
first pair of CVs that are correlated between the structural to
functional and functional to structural modalities, respectively
(details are given in Tables S2.II and S2.III in Supplementary
Material 2). To find the labels of the regions, we used the cor-
tical and sub-cortical Harvard-Oxford Atlases and Cerebellar
Atlas in the MNI152 space after normalization with FLIRT
using FSL.

In this study, the goal was to simultaneously extract the
group discriminating brain voxels in fMRI contrasts as well
as the abnormal voxels reflected in the structural T1-weighted
maps. To this end, we were able to visualize an underlying
function–structure association by their joint analysis revealing
strong sMRI–fMRI links. Several unimodal structural analysis
such as voxel-based morphometry, volumetric and cortical
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Fig. 5. The multi-slice view of the first canonical correlation coefficients of (top panel) structural (w1) and (bottom panel) functional (w2) modality,
produced by ssCCA approach. These images show the most significant regions that are correlated between two modalities and can decode the true
pattern (first pair of CVs) of difference between AD and HC subjects represented in Fig. 4.

thickness studies showed that all of these regions had signif-
icant atrophy in AD patients compared to HCs. They include
caudate [27], hippocampus [1], lateral ventricle [28], thala-
mus [2], planum polare [29], planum temporale [29], heschl’s
gyrus [30], cerebral WM [31], accumbens [32], amygdala [1],
[2], [29], paracingulate gyrus [33], and cerebellum [34].

In addition, several FC studies reported significant connec-
tivity differences between the AD and HC groups in some
areas. For example, in [35], it is shown that the AD group
has more synchronization between sub-cortical regions such
as pallidum and putamen and frontal cortices compared to the
HC group. Also, in [36], it is shown that the FC between the
amygdala and the default mode network (DMN) in the AD
group is impaired. The AD group has also shown decreased
FC between the left thalamus and inferior frontal gyrus [37]
and between prefrontal lobe (such as frontal operculum cor-
tex) and parietal lobes but increased positive correlations
within the occipital lobe [38]. In addition, increased FC
was observed between the bilateral thalamus and inferior
temporal gyrus [37]. Furthermore, compared with the HCs,
the AD patients have shown a significant amplitude of low-
frequency fluctuations (ALFF) increases in the hippocam-
pus [39]. Moreover, compared with the HCs, a decreased FC
pattern was observed between the marginal division and the
amygdala/parahippocampal region, the inferior frontal gyrus
and the cerebellum for the AD patients [40].

V. DISCUSSION

We have proposed a new CCA-based multi-modal data
fusion approach that identified the unique and hidden pat-
tern of subject variability in high dimensional structural and
functional modalities of the AD patients. Most of the multi-
variate fusion methods in the literature rely on some form of
a priori feature selection or feature extraction before invoking
the final algorithm. In contrast, in our scalable algorithm,
the feature selection method is not only spatially informed
but also embedded, meaning that feature selection (which
is done in other methods in a PCA step) is conducted
together with a model fitting that leads to an improvement
in prediction. Therefore, the proposed method can efficiently
fit small-sample-large-variable problems. This method allows
investigators to search in a data-driven fashion across the
whole-brain for discovering correlated features across multiple
modalities, which can potentially have completely different

natures, signal- and contrast-to-noise ratios, voxel counts, and
spatial smoothness.

In addition, the proposed method is a general, symmetric,
and adaptive framework, based on the size, properties, and
question at hand for the available data in each modality.
Depending on the situation, one can turn the proposed con-
straints “on” or “off” for each of the modalities. In the
full version of the proposed framework, different modalities
are combined with equally important roles. We have shown
that our approach finds the true patterns of the subjects-
course between the AD patients and aged matched HC
subjects with only the basic and minimal pre-processing
steps, and that the extracted CVs are robust to population
subsampling.

A. Interpretable Models for Whole-Brain
Structural-Functional Fusion

The objective of ssCCA is to construct CVs that explain
their own modality and at the same time are well cor-
related with the corresponding CVs in another modality.
In other words, the first objective of ssCCA is to find the
CVs that can explain a significant proportion of variance
in each dataset. Its second objective is to find the CVs
with relatively high correlation coefficients between the two
datasets. Its third objective is that the first two objectives are
obtained using the most interpretable and informative features.
In contrast, the only objective of the standard CCA-based
fusion is the construction of CVs that maximize their cor-
relation coefficients with the CVs of another dataset. From
this point of view, the CVs extracted by ssCCA are able to
represent major information for individual modalities while
the ones extracted by CCA may be trivial (e.g., noises
with similar patterns) even if their correlation coefficient is
maximum. Besides, ssCCA can handle high-dimensional and
collinear data, which is often the case in real-world biological
applications.

When the dimensions p and q are high, regularization
is required in order to obtain a unique solution to the
optimization problem. We propose a regularized version of
sCCA-based fusion method that adds additional regularized
terms that preserve local structure in the data while keeping the
appealing properties of CCA. When the smoothness penalty
is combined with the lasso penalty as in (4), the lasso
penalty sets many of the CCCs to zero and for the remaining
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non-zero ones, the smoothing penalty encourages CCCs to
take similar values by shrinking their differences toward
zero.

Despite offering a sparse solution and automatic variable
selection, there are several disadvantages to using l1-penalized
methods like the lasso in practice. For example, lasso will
typically select only a subset of “representative” predictors
to include in the model [41]. This can make it difficult to
interpret features (model will be too sparse) and sensitive
to data resampling (e.g., during cross-validation) [42]. More-
over, lasso can select at most n non-zero coefficients out of
p or q candidates [41], which may prove undesirable when
the number of input features ( p and q) exceeds the number
of samples (n).

In this work, we presented a modification of the previously
proposed methods that explicitly imposes structure on the
model coefficients. This allows us to pre-specify constraints
on the model coefficients (e.g., based on prior information like
local smoothness), and then to tune these constraints. In other
words, it helps us to construct an exploratory data-driven
approach whose features are globally sparse but locally struc-
tured by the graph G (e.g., the Laplacian matrix). In addition,
ssCCA promotes spatial contiguity, but instead of promoting
sharp piecewise constant patches, it encourages the output
clusters to appear in a smooth form.

B. General Comments on ssCCA

The number of CVs to be extracted from a CCA-based
fusion approach is a very important parameter of the model.
Although it is possible to extract it as the minimum rank of
the datasets X and Y, not all of them are generally useful. The
main reason is that the measured data are never noise-free and
some of the obtained CVs only describe the effect of noise,
and it is common to ignore these CVs because of their small
variation.

On a general note, it should be emphasized that inter-
pretability of the results was one of our chief motivations in
this work. As a result, the proposed method accommodates
flexible constraints on model coefficients that give us the
ability to detect a range of possible features, from smooth and
localized to sparse and distributed. Beyond generalizability of
the extracted features, a common approach for choosing the
final set of features is to select the set that gives the highest
prediction accuracy. As described in the Results Section, the
proposed algorithm simultaneously generalizes the model by
minimizing the difference between correlation in the training
and testing subsets and constructs a classifier that yields clas-
sification accuracy (or goodness-of-fit) competitive with the
state-of-the-art multivariate methods. However, the ultimate
goal in our application is the discovery of informative and
biologically inspired features (i.e., it should include relevant
features while excluding nuisance features) and thus classifi-
cation accuracy by itself is insufficient.

In addition, in this work, for the initialization of the ssCCA
algorithm, we use the left and right singular vectors of
XT Y using a new approach, i.e., QR decomposition instead
of SVD. By this technique, we overcome the drawback of

manipulating SVD in extra-large datasets. For example, in the
simulation study, the dimensions of p and q are 188,518 and
53,600, respectively. Therefore, the dimensions of XT Y is
188,518×53,600 of floating numbers. Therefore, the required
RAM for manipulating this matrix is about 38 GB, which is
unavailable in personal computers and the computation is very
time-consuming. However, by using the proposed techniques,
the required memory is in the order of the number of the
subjects, i.e., n × n. Consequently, the datasets used in this
study were analyzed in only 8 s using a desktop PC with Intel
quad-core 2.93 GHz CPU and 8 GB of RAM. The computation
times of ssCCA and sCCA are discussed in Supplementary
Material 2.

C. Future Directions

Most of the existing approaches focus on the fusion of two
modalities but additional benefits may be obtained by combin-
ing more than two modalities in a single model and examining
N-way data fusion [7]. Although we used two modalities for
fusion but the procedure can be easily extended to multi-modal
data by an extension of the objective function of CCA. There is
also the possibility of applying this technique to non-imaging
modalities. For example, MRI data and non-imaging modali-
ties like behavioral or genetic data can be directly combined
in a multi-modal ssCCA framework. It would be interesting
to test ssCCA on datasets with other sources of variability
(e.g., relatively homogeneous group of healthy subjects with
large age-span) to determine strongly age-related features in
different modalities. In such kind of studies, the proposed
method has the capability to model or adjust the effect of
covariates such as age and gender.

Here, we have four optimization parameters that should
be optimized to find the minimum of (5). As mentioned in
Parameter Optimization section, our optimization algorithm
has two steps. In the first step, we assume that two parameters
λ1 and λ2 are zero. Then we optimize the equation to find
the best α1 and α2 in a 2D search plane. In the second step,
we assume that α1 and α2 are constant (based on the first
step) and find the best λ1 and λ2 to minimize the criterion.
Therefore, this optimization procedure is sub-optimal; in our
future work, we will improve the optimization algorithm to
find all four parameters in a single step.

VI. CONCLUSION

We presented a method for voxel-level fusion of whole-brain
multi-modal neuroimaging datasets. The proposed method
can automatically detect informative and biologically-inspired
features (voxels) based on some heuristic and targeted reg-
ularizations such as sparsity, non-negativity, and smoothness
constraints. The benefit of our proposed CCA-based fusion
approach is that, the resulting canonical coefficients explain
their own modality and are well-correlated with the corre-
sponding canonical coefficients in the other modality. The
power of the proposed method was demonstrated in the
simulation studies where its performance was unanimously
better than standard CCA or sparse and regularized CCA.
Finally, in a real dataset, we found correlated ROIs that most
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of them were previously reported in unimodal structural and
functional studies of AD.
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